Journal of Fluorine Chemistry, 39 (1988) 153-162

Received: August 29, 1986; accepted: January 11, 1988

PENTAFLUOROTELLURIUMOXIDE DERIVATIVES OF FLUOROCARBONS

Carl J. SCHACK and Karl O. CHRISTE Rocketdyne, A Division of Rockwell International Canoga Park, CA 91304 (U.S.A.)

SUMMARY

The reaction of xenon bis-pentafluorotelluriumoxide, $Xe(OTeF_5)_2$, with an excess of perfluorobutadiene gives almost exclusively $TeF_5OCF_2CF=CFCF_2OTeF_5$ and only very little $TeF_5OCF_2CF(OTeF_5)CF=CF_2$, the first examples of TeF_5O substituted unsaturated fluorocarbons. A similar reaction of perfluorocyclohexene produces, depending on the reaction temperature, exclusively the addition product, $c-C_6F_{10}(OTeF_5)_2$, or predominantly $c-C_6F_{11}OTeF_5$, the mixed addition, fluorination product. In the case of TeF_5OF , an ambient temperature reaction with perfluorobenzene results, depending on the stoichiometry of the reaction, in the addition of either one TeF_5OF or two molecules of TeF_5OF accompanied by the oxygenation of the ring to a cyclohexanone derivative.

INTRODUCTION

Reactions of TeF₅OX (X=F,C1) and Xe(OTeF₅)₂ with various fluoroolefins and fluorocarbon iodides have proven to be useful paths to a number of TeF₅Osubstituted fluorocarbons [1-4].

 $TeF_{5}OX + >C=C < - TeF_{5}O-C-C-X \\ | | \\ Xe(OTeF_{5})_{2} + >C=C < - TeF_{5}O-C-C-OTeF_{5} + Xe \\ 2TeF_{5}OC1 + R_{f}I - R_{f}I(OTeF_{5})_{2} + Cl_{2} \\ 2R_{f}I(OTeF_{5})_{2} - R_{f}OTeF_{5} + R_{f}I + I(OTeF_{5})_{3}$

0022-1139/88/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

All of these TeF_5^{0-} derivatives were saturated and it was of interest to determine whether similar moieties with residual unsaturation could be synthesized. These investigations involved perfluorobutadiene and perfluorobenzene as the substrates. To facilitate the characterization of the benzene addition products, the reaction of $\text{Xe}(\text{OTeF}_5)_2$ with perfluorocyclohexene was also examined.

EXPERIMENTAL

Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-traps, 316 stainless steel bellows-seal valves, and a Heise-Bourdon tube-type gauge. The synthetic reactions employed here were usually conducted in stainless steel cylinders. Infrared spectra were recorded on a Perkin Elmer Model 283 spectrophotometer using cells equipped with AgBr windows. Raman spectra were recorded at ambient temperature on a Cary Model 83 spectrophotometer with the use of the 488-nm exciting line of an Ar ion laser. Sealed quartz tubes, 3mm OD, or Pyrex mp capillaries were used as sample containers. ¹⁹F nmr spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer with internal CFCl₃ as a standard with negative chemical shift being upfield from CFCl₃. Literature methods were used to prepare Xe(OTeF₅)₂ [5] and TeF₅OF [6]. Fluorocarbons used were commercial products (SCM Specialty Chemicals).

For reactions with Xe(OTEF₅)₂ a tared, prepassivated cylinder was loaded with the solid xenon compound in the dry box. The cylinder was evacuated, cooled to -196°, and a measured amount of olefin was condensed in. The closed cylinder was allowed to warm to ambient temperature before heating to a higher temperature if necessary. Monitoring the extent of reaction was accomplished, where desired, by recooling the cylinder to -78° and measuring the amount of Xe evolved. The reactions of C_6F_6 and TeF₅OF were carried out by successively condensing the reactants into a cylinder cooled to -196° and then allowing the cylinder to warm to ambient temperature. At the conclusion of the reactions the volatile products were separated by fractional condensation, with the R_fOTeF_5 being trapped at -45 to 0° depending on the particular product. A runaway reaction was experienced in one instance with C_6F_6 and TeF₅OF, as evidenced by the formation of COF₂, CF₄, and a grey powder as the products. All of the R_fOTeF_5 derivatives are colorless, mobile liquids of low volatility, and stable on storage.

Data summarizing the synthetic reactions is presented in Table 1. Addition of only two TeF₅O- groups to the C=C system of perfluorobutadiene was accomplished in good yield, under moderate conditions, and with only slow consumption of the Xe(OTeF₅)₂ in the latter stages of the reaction. Based on spectroscopic properties, the TeF₅O- groups added overwhelmingly to the 1,4 carbons.

$$CF_2 = CFCF = CF_2 + Xe(OTeF_5)_2$$

$$TeF_5 OCF_2 (TeF_5 0)CFCF = CF_2 42$$

This result is consistent with the transfer of TeF₅O radicals to the olefin and is comparable to the addition of NF₂ radicals from N₂F₄, which also forms the 1,4 adduct [7]. The ¹⁹F nmr spectrum (Table 2) for the 1,4 TeF₅Oaddition product is an A₂B₄ spin system for the CF resonances. Bonding of the TeF₅O- groups to the CF₂ carbons is confirmed by the observed coupling between the CF₂ fluorines and the four basal fluorines of the TeF₅O- group. The ¹⁹F nmr spectrum showed, in addition to the main 1,4 substitution product, the presence of a small amount of the 1,2 addition compound. The chemical shifts and coupling constants characteristic of a perfluorovinyl group [8] effectively identify this component in the mixture. For the TeF₅O- groups in both compounds the nmr spectra exhibit AB₄ patterns typical of those previously noted for other R_fOTeF₅ species [1-3].

The 1,4 TeF₅O- addition compound of perfluorobutadiene exists as either a cis or a trans isomer. We prefer the trans-isomer for our product based on the observed nmr chemical shift of the CF=CF fluorines compared to those in the similar $(CF_3)_2$ CFCF=CFCF₃ molecule [9]. Further support for the trans-isomer comes from the vibrational data (Table 3) which shows a very low intensity C=C stretching band. This is assignable to an internal vC=C motion [10]. For the cis isomer this band would be expected to be more intense. The Raman data show a relatively strong band at 1740 cm⁻¹ which is expected for both isomers.

TABLE 1	

parameters
Reaction

R _f Compound mmol	TeF ₅ 0- Compound mmol	ч°С	Time	R _f OTeF ₅ (% Yield) ^a	Ртт 20°С	Other Products
c4F6	Xe(OTeF ₅) ₂	25	2d			Xe(89)
2.73	2.33	then 40	5d	C ₄ F ₆ OTeF ₅) ₂ 1,4(73); 1,2(3)	2	Xe, C4F6, C4F6(OTeF5)4
c-C ₆ F ₁₀ 2.50	Xe(OTeF ₅) ₂ 2.14	95	5d	c-C ₆ F ₁₀ (OTeF ₅) ₂ (81)	<1	Xe. c-C ₆ F ₁₀ , TeF ₅ OH
c-C ₆ F ₁₀ 3.16	Xe(OTeF ₅) ₂ 2.80	115	3đ	c-C ₆ F ₁₁ OTeF ₅ (69)	£	Xe, c ^{-C} 6 ^F 10, ^{TeF} 6, TeF ₅ OH, (TeF40) _n
				c-C ₆ F ₁₀ (0TeF ₅) ₂ (6)		
с ₆ F ₆ 1.0	TeF ₅ OF 0.73	25	4đ	C ₆ F ₇ 0TeF ₅ (50)	2.5	C ₆ F ₆ , TeF ₆
G6F6 0.80	TeF ₅ 0F 2.90	25	14d	C ₆ F ₈ 0(OTeF ₅) ₂ (6)	1،	TeF ₅ OF, TeF OTeF ₅ , TeF ₅ OH
^a Yields based	on limiting reagent					

¹⁹F NMR data for R_fOTeF₅ compounds^a

^aCFCl₃ reference, negative shift being upfield from the reference. ϕ =chemical shift, ppm where b=broad, d=doublet, t=triplet, qi=quintet, c=complex, m=multiplet. The area ratios measured for these resonances agreed with the given assignments. Jl25_{TE-F}=3750-3790 Hz.

^bAB₄ pattern of TeF₅O- groups obscured by those of the 1,4 adduct, the major component of the mixture. The products from the reaction of $Xe(OTeF_5)_2$ with perfluorocyclohexene were found to be temperature dependent. At 95° a good yield of the expected adduct, $c-c_6F_{10}(OTeF_5)_2$, was obtained, but at 115° the primary product was the mono TeF₅O- substituted compound, $c-c_6F_{11}OTeF_5$. Thus, at the higher temperature, fluorination of one of the C=C carbons occurred. This fluorination could proceed either by a direct transfer of fluorine from a TeF₅O radical to the carbon or by an internal rearrangement and elimination after addition of the first TeF₅Ogroup.

This type of reaction path had not been observed previously in similar TeF_5^{0-} systems but none of those reactions involved temperatures over 100°. However in the case of the analogous selenium compounds, a more pronounced tendency towards fluorination, besides the expected XF_5^{0-} addition, has been found [11].

The ¹⁹F nmr spectra of the two cyclohexene derivatives are very much alike but the slight differences noted and the measured area ratios for total CF:TeF clearly reveal the formation of two products with one or two TeF₅O-substituents on the saturated ring. Slight differences in the volatility of the two compounds were also noted. However the vibrational spectra were virtually the same, a circumstance that was encountered also with the related $c-c_5F_9OTeF_5$ and $c-c_5F_8(OTeF_5)_2$ materials [2,3].

In the reaction of $Xe(OTeF_5)_2$ with perfluorobenzene the products proved to be complex mixtures involving oxygenation, fluorination, and addition of TeF_50 groups. This system will require more study and therefore will not be discussed further. An alternate mode of introducing TeF_50 - groups into the C_6F_6 ring was its reaction with TeF_50F which has previously been shown to react readily with fluoroolefins [1]. At room temperature C_6F_6 was found to add one or two moles of TeF_50F depending on the ratio of reactants. The listed yield (50%) of the mono adduct does not represent the maximum since the sample of TeF_50F used was contaminated with an appreciable amount of TeF_6 .

TABLE 3

Vibrational spectra of R_{f}^{0} OTeF compounds

	C4E6-	(OTEF ₅ 12 ^b	<u>c-C</u> 6 <u>F</u> 1	[0 ^{(OTeF} 5)2	<u>c-C₆F₇OTeF₅</u>	<u>c-C6E80(</u>	OTEF522
Assign.	IR(gas)	Raman(lig.)	IR(gas)	Raman(lig.)	IR(gas)	IR(lig.)	Raman(lig.)
vC=0	3051					1876 w	1885(0.2)p
ν ν υ=υ ν	1735 vw	1740(0.7)p			1745 m		
	M 0131	dn (+ • • •) et + t			1366 w		
					1347 w		
	1318 w		1310 w	1315(0.2)	1327 s		
vCF	1277 s 1230 ms	1275(0.1)p	1280 m 1245 s	1275(0.3)p	1290 mw	1283 m 1738 ms	1288(0.2)dp
					1207 w	1223 ms	1000 10000
	1185 ms		1195 s		1193 w	1184 s	1190(0.06)p
-	1140 s	1135(0.2)p	1160 m	1160(0.1)p	1176 m	1162 ms	1160(0.1)p
_	1085 w		1067 th	110/5901	1100 m		
ر مردم				d/++01-00+	1017 =		d (n • T) 7 0 n T
vcc			995 s	995(0.15)p	1000 %	1000 sh	
	965 w	965(0.03)	975 a	980(0.05)	985 s	980 s	980(0.5)p
YLE Y	925 w	925(0.08)p				863 vw	
5		835(0.2)dp		827(0.1)p		848 w	850(0.03)p
v TeF	748 vs	738(sh)	745 s	745(sh)	745 s	738 5	745(sh)
vTeF'	718 ms	713(3.4)0	715 m	718(1,1)p	718 m	712 m	a(0-2)212
v TeF.		675(10)p		678(10)p			678(10)p
5 5		-	640 vw	625(0.2)p		640 vw	630(0.5)p
				605(0.2)p		590 w	596(0.6)p
		540(0.5)p	530 vw	532(0.8)p		521 vw	528(0.2)p
						480 vw	475(0.1)p
1							425(0.1)p
Sgref4	320 -	1510,614	120 m	333(0.8)p 315(0.6)dn	377 ma	320 me	215/0 0145
				1			dn/
6 _ TeF '	,	265(0.6)dp		265(0.3)dp			265(0.6)dp
1		180(0.2)p		188(0.2)p			185(0.2)p
				160(1.1)p			165(0.2)p
		108(0.5)p		132(0.6)p			115(1.0)p

159

b₁,4 and 1,2 isomer mixture.

For $C_{6}F_{7}OTeF_{5}$ the ¹⁹F nmr spectrum (Table 2) shows that the addition of F and TeF₅O- occurred in para positions to furnish the 1,3 cyclohexadiene derivative. For the ring fluorines the spectrum is quite similar to that of the corresponding $CF_{3}OF-C_{6}F_{6}$ adduct [12]. It is noteworthy that, in the $CF_{3}OF$ case, both 1,2 and 1,4 addition occur and that the former predominates. Thus the observed exclusive 1,4 addition with TeF₅OF may be the result of steric hindrance by the bulkier TeF₅O- ligand. The infrared spectrum of $C_{6}F_{7}OTeF_{5}$ shows a medium intensity band at 1745 cm⁻¹ attributable to vC=C.

When C_6F_6 was reacted with an excess of TeF₅OF, a vigorous reaction ensued which resulted in the formation of an addition compound containing two TeF₅O- groups as shown by the CF:TeF nmr area ratio of 8:10. This ratio agrees with that expected for a 2:1 adduct of the formula $C_6F_8(OTeF_5)_2$. The TeF₅Ogroups were indistinguishable and the CF resonances consisted of a broad unresolved signal with a chemical shift similar to those of the above-mentioned cyclohexane examples. This was unexpected since a 2:1 adduct should still have one F > C = C < F group whose fluorines should have a chemical shift of about -150 ppm, which is different from that of about -131 ppm expected for the CF₂ groups.

Furthermore, the vibrational spectra for this 2:1 adduct should have a moderate intensity band at about 1740 cm⁻¹ due to the stretching mode of the C=C bond. This was absent and instead a weak IR band was observed at 1876 cm⁻¹. This band is in a region typical for highly fluorinated carbonyl groups [10]. Therefore it appears that this 2:1 adduct is not a cyclohexene but most likely a cyclohexanone, $c-c_{6}F_8O(OTEF_5)_2$. One possible structure is shown.

Observation of the by-product TeF_5 OTeF₅ [13] in this system also indicates that an oxygenation reaction may have occurred.

160

All the R_fOTEF_5 compounds of this study exhibit characteristic AB_4 nmr spectra due to the TeF₅O- groups with A being in the range -49 to -54 ppm and B_4 being -40 to -42 ppm [1-3]. In the vibrational spectra strong infrared bands at about 745, 720, and 320 cm⁻¹ are observed attributable to $v_{as}TeF_4$, vTeF', and $\delta FTeF_4$, respectively, of the TeF₅O- group. The Raman spectra are dominated by a polarized band near 675 cm⁻¹ which is assigned to the symmetric TeF₄ stretching mode, and which has no infrared counterpart. The vTeF' IR band has a moderate intensity polarized Raman counterpart at about 715 cm⁻¹. In addition, two depolarized bands at about 265 and 315 cm⁻¹ are assigned to $\delta_{as}TeF_4$ and a coincidence of δ_sTeF_4 , and $\delta FTeF_4$, respectively.

CONCLUSION

The synthesis of the first examples of unsaturated fluorocarbon TeF_5^{0-} substituted compounds has been accomplished. For cyclic compounds, in addition to the transfer of TeF_5^{0-} to the ring, a competitive fluorination and oxygenation reaction was observed.

ACKNOWLEDGEMENT

The authors are grateful for support of this work by the U.S. Air Force Office of Scientific Research under Contract F49620-81-C-0020 and to Dr. L. R. Grant for helpful discussions.

REFERENCES

- 1 C. J. Schack and K. O. Christe, J. Fluorine Chem., 24 (1984) 467.
- 2 C. J. Schack and K. O. Christe, J. Fluorine Chem., 26 (1984) 19.
- 3 C. J. Schack and K. O. Christe, J. Fluorine Chem., 27 (1985) 53.
- 4 C.J. Schack and K. O. Christe, submitted for publication.
- 5 F. O. Sladky, Monatsch. Chem., <u>101</u> (1970) 1571.
- 6 C. J. Schack and K. O. Christe, Inorg. Chem., 23 (1984) 2922.
- 7 A. V. Fokin, A. N. Voronkov, V. A. Komarov, and K. A. Abdulganicva, Izv. Akad. Nauk SSSR (1971) 1349.

- 8 C. H. Dungan and J. R. VanWazer, 'Compilation of Reported ¹⁹F NMR Chemical Shifts,' Wiley-Interscience, New York, 1970.
- 9 R. D. Dresdner, F. N. Tlumac, and J. A. Young, J. Org. Chem., <u>30</u>, (1965) 3524.
- 10 J. K. Brown and K. J. Morgan, Adv. in Fluorine Chem., 4 (1965) 253.
- 11 C. J. Schack and K. O. Christe, to be submitted for publication.
- 12 M. S. Toy and R. S. Stringham, J. Fluorine Chem., <u>5</u> (1975) 31.
- 13 H. Burger, Z. Anorg. Allg. Chem., 360 (1968) 97.